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Principal-component-analysis eigenvalue spectra from data with symmetry-breaking structure
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Principal component analysis~PCA! is a ubiquitous method of multivariate statistics that focuses on the
eigenvaluesl and eigenvectors of the sample covariance matrix of a data set. We considerp, N-dimensional
data vectorsj drawn from a distribution with covariance matrixC. We use the replica method to evaluate the
expected eigenvalue distributionr(l) asN→` with p5aN for some fixeda. In contrast to existing studies
we consider the case whereC contains a number of symmetry-breaking directions, so that the sample data set
contains some definite structure. Explicitly we setC5s2I1s2(m51

S AmBmBm
T , with Am.0 ; m. We find that

the bulk of the eigenvalues are distributed as for the case when the elements ofj are independent and
identically distributed. With increasinga a series of phase transitions are observed, ata5Am

22 , m
51,2, . . . ,S, each time a singled function,d„l2lu(Am)…, separates from the upper edge of the bulk distri-
bution, wherelu(A)5s2@11A#@11(aA)21#. We confirm the results of the replica analysis by studying the
Stieltjes transform ofr(l). This suggests that the results obtained from the replica analysis are universal,
irrespective of the distribution from whichj is drawn, provided the fourth moment of each element ofj exists.

DOI: 10.1103/PhysRevE.69.026124 PACS number~s!: 02.50.Sk, 05.90.1m
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I. INTRODUCTION

The techniques of statistical physics have been appl
with some success, to the study of many different statist
learning methods@1#. Amongst such methods is that of prin
cipal component analysis~PCA! @2# where one aims to dis
cover correlations between the different components o
data set, and thereby provide a means for reducing the c
plexity of the representation of the data. Given a data
consisting ofp, N-dimensional mean centered vectorsjm ,m
51, . . . ,p, the leading principal components are taken
the eigenvectors of the sample covariance matrix,Ĉ
5p21(mjmjm

T , that have the largest eigenvalues—i.e., tho
directions in the data space along which there is the grea
variation. If we useP principal components to represe
~with loss! the original data set, theP leading eigenvectors o
Ĉ are in fact the maximum likelihood choice for reconstru
ing the data set. More recently PCA has been recast
latent-variable model@3#, allowing its extension to a mixture
of PCA models@4#.

Given a data set the question then remains: how m
principal components ofĈ should one retain to model th
true underlying covariance matrixC ? Typical methods of
selecting principal components focus on comparing the
genvaluesl of Ĉ to the expected distribution of eigenvalu
r(l) when the components ofjm are independent and iden
tically distributed~i.i.d.! @5#. However it would be instructive
to determine the expected distributionr(l) when the com-
ponents ofjm are not i.i.d., but when the sample vectorsjm
are drawn from a distributionP(j) containing a finite num-
ber of symmetry-breaking directions.
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Early work by Anderson@6# considered the asymptoti
distribution of l in the limit p→` with N finite, i.e., an
increasing number of sample vectors. For some real app
tions one may havep!N and so the limit considered b
Anderson@6# will be somewhat unrealistic. Study of PCA fo
more general values ofa5p/N has been done by applyin
results from standard matrix ensembles in random ma
theory@7#. These results have been extended to more gen
sample covariance matrices@8#, although it is still only for
the case where the elements ofj are i.i.d. Therefore in this
paper we aim to explicitly obtain the behavior ofr(l) for
general values ofa and asN→`, when the true covariance
matrix C does contain a finite number of symmetry-breaki
directions.

II. MODEL

The sample data vectors$jm%m51
p are considered to con

tain both a signal and a noise component, i.e.,

jm5zm1em , ~1!

where the elements of the noise vectorem are i.i.d. with mean
zero and variances2. Initially we restrict ourselves to the
case wherezm is given by a small numberS of Gaussian
distributed latent variables corresponding to orthogonal s
nal directionsBm ,m51, . . . ,S. Thus,zm5(m51

S zmBm , with
zm;N(0,s2Am). Similarly we initially consider thatem is
drawn from a Gaussian distributionN(0,s2I ). In this case
jm has the Gaussian distribution

P~j!5~2p!2N/2~detC!21/2exp@2 1
2 j TC21j#, ~2!

where the covariance matrixC is isotropic with variances2

except for a small number of orthogonal symmetry-break
directions, i.e.,

uk/
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C5s2I1s2 (
m51

S

AmBmBm
T , Bm

T Bm85dmm8 , ~3!

whereAm.0; m. Later we will relax the Gaussian assum
tion for the distribution of pattern vectorsjm . The isotropic
case corresponds toAm[0; m, and for simplicity we will
not consider the degenerate case, i.e., we restrict our ana
to A1.A2.•••.AS.0. We denote the eigenvalues ofC by
$di% i 51

N , so that for the covariance matrix given abo
$di% i 51

N 5@s2(11A1), . . . ,s2(11AS),s2, . . . ,s2#. The

sample covariance matrix is defined byĈ5p21(mjmjm
T .

When the elements ofj are i.i.d. Gaussian,Ĉ is simply ~up
to a factorp21) the Wishart matrixXXT @9# formed from the
data matrixX5(j1 , . . . ,jp) ~or strictly speaking an anti
Wishart matrix@10# when p,N). We are interested in the
observed distribution of eigenvalues ofĈ whenN is large but
finite. The behavior at largeN is often approximated by tha
found in the limitN→`, with p5aN for some fixeda. For
a,1, Ĉ is singular with a (N2p)-fold degenerate zero ei
genvalue. However we are interested in the behavior of
largest eigenvalues ofĈ and how their average values d
pend upon$Am%m51

S anda.

The elements ofĈ are random variables and as suchĈ
represents a random matrix. The study of the eigenva
spectra of random matrices has a long history@11#, with Bai
@12# and Forresteret al. @13# providing recent comprehensiv
reviews of the different aspects of the literature. Often t
study is restricted to ensembles of matrices that are invar
under certain classes of transformation, such as the Gau
orthogonal ensemble~GOE!. For Wishart matrices the distri
bution of the largest eigenvalue has been shown to be id
tical to that for the GOE@7#. Due to the presence of th
symmetry-breaking directions inC we would not automati-
cally expect the behavior of the largest eigenvalue in
ensemble of sample covariance matrices to be equivale
that for the GOE, or any of the other common ensemb
studied.

For the isotropic case the observed distribution of eig
values converges to, asN→` @14,15#,

r~l!5~12a!Q~12a!d~l!1
a

2pls2

3Amax„0,~l2lmin!~lmax2l!…, ~4!

where lmax,min5s2a21(16Aa)2. Marčenko and Pastu
@14# studied the case of a general covariance matrix
found that the limiting distribution satisfied

r~l!5 lim
e→01

p21Im amr~l1 i e!, ~5!

where mr(z) is the Stieltjes transform ofa21r(l) and is
determined by

z~mr!52
1

mr
1a21E dH~ t !

t211mr

, ~6!
02612
sis

e

e

s
nt
ian

n-

e
to
s

-

d

where the measureH(t) is defined such thatN21( idi
k con-

verges to* tkdH(t); k. An equivalent result is also derive
by Wachter@16#. From this we can see that if our covarian
matrix C has only a few symmetry-breaking directions, th
in the limit N→` the variance along these directions w
have zero measure as defined byH. Thus in the limit N
→` the distribution of eigenvalues is the same as for
isotropic case. However it is the behavior, at finite but lar
N, of the eigenvalues corresponding to the few symme
breaking directions present inC that we are interested in
Understanding the distribution of the eigenvalues ofĈ may
allow us to construct more robust hypothesis tests to se
the number of signal components contained within a data
At present a number of hypothesis tests use the distribu
~4! as the basis for a null hypothesis test on the eigenva
of Ĉ. For example, Johnstone@7# provides an inequality for
the likelihood of an individual eigenvalue fromĈ in terms of
the likelihood of the leading eigenvalue whenC is isotropic.
The leading eigenvalue from the GOE has a Tracy-Wid
~TW! distribution @17# and Johnstone@7# has shown that
whenC is isotropic, the leading eigenvalue ofĈ also has a
Tracy-Widom distribution. Therefore Johnstone’s inequal
provides a means of constructing a conservative hypoth
test on the observed eigenvalues ofĈ. Whether the top ei-
genvalue ofĈ follows a TW distribution whenC contains
symmetry-breaking directions is still an open question.

The behavior of PCA when one symmetry-breaking dire
tion B is present@with variances2(11A)] has been studied
using the replica method, in the context of unsupervis
learning @18,19#, where one considers the overlapR5J•B
betweenB and the leading principal componentJ of Ĉ. One
observes the phenomenon of retarded learning, wherebyR2

goes through a critical phase transition fromR250 for a
,A22 to R2.0 for a.A22. Formulating the calculation o
the eigenvalue spectrum ofĈ in terms of its resolvent lead
to a partition function very similar to that used in the stu
of the unsupervised learning performance of PCA, and the
fore suggests using replicas to derive the eigenvalue s
trum of Ĉ. The trace of the resolvent,G(l), of the matrixĈ
is defined as

tr G~l!5(
i 51

N
1

l2l i
, ~7!

from which the density of eigenvaluesr(l) can be calcu-
lated as

r~l!5 lim
e→01

~Np!21Im trG~l2 i e!. ~8!

The first application of replicas to evaluate the expected
genvalue distribution of a random matrix was due to E
wards and Jones@20#. This approach has been extended
many directions~e.g., sparse random matrices@21# and
asymmetric random matrices@22#!. More recently Sengupta
and Mitra@23# calculated the resolvent~asN→`) using rep-
licas and found that the resolvent obeys the relation
4-2
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z5
p

tr G~z!
2(

i 51

N
1

tr G~z!2pdi
21

. ~9!

It is a trivial matter to confirm that2p21tr G(z) corre-
sponds to the Stieltjes transformmr(z) and that Eq.~9! is
identical to Eq.~6!. The work of Sengupta and Mitra@23#
demonstrates the utility of using replicas to study the res
vent of Ĉ. However, as already mentioned, for finiteS and
on taking the limit N→`, Eq. ~9! predicts a distribution
r(l) identical to the isotropic case~4!. Potentially one could
solve Eq.~6! or ~9! at finite N and then take the limit, al-
though the validity of this approach is uncertain given th
the relationships~6! and~9! have been obtained by taking th
limit N→`. For S.1 solving for trG(z) involves solution
of a third- ~or higher-! order polynomial. Thus determinin
the distributionr(l) explicitly may be more difficult.

In this paper we calculate the resolvent ofĈ using the
replica method, but examine the explicit behavior of t
saddle point equations with variation of the paramet
$Am%m51

S . Thus we are able to derive explicit results for t
expectation values of theS highest eigenvalues, rather tha
the more general relationship for the resolvent obtained
Sengupta and Mitra@23#. For the case whereC contains one
symmetry-breaking direction we observe a phase transi
in the eigenvalue spectrum ofĈ at a5A22, thus coinciding
not unsurprisingly with the transition observed in the ord
parameterR2 analyzed in unsupervised learning studies. B
low ac5A22, the calculated spectrum is identical to th
obtained from the isotropic case. Aboveac the bulk of the
spectrum is still identical to that for the isotropic case, b
with a single eigenvalue~the largest! clearly separated from
the bulk. Transitions in the eigenvalue spectra of rand
matrices have also been well documented in other bran
of physics~see, for example, Ref.@24# for a recent review!.
The calculation of the resolvent using replicas can easily
generalized to the situation whereC containsS.1 ~orthogo-
nal! symmetry-breaking directions. In this case we observ
series of phase transitions ata5Am

22 ,m51,2, . . . ,S, each
time a single eigenvalue separates from the upper edge o
bulk of the spectrum, which is still the same as for the is
tropic case.

III. THEORY

The density of eigenvaluesr(l) of the N3N matrix Ĉ
can be expressed in terms of its resolventG(l),

r~l!5 lim
e→01

1

Np
Im tr G~l2 i e!. ~10!

The trace of the resolventG(l) can be represented as

tr G~l!5
]

]l
ln det~lI2Ĉ!52

]

]l
ln Z~l!. ~11!

Using the standard representation of the determinant o
matrix,
02612
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@detA#21/25~2p!2N/2E expF2
1

2
fTAfGdf, ~12!

we have

ln Z~l!52lnE expF2
l

2
if i21

1

2p (
m

~f•jm!2Gdf

2N ln 2p. ~13!

The belief is that the eigenvalue spectrum is self-averag
so that the calculation ofr(l) for a specific realization of the
sample covariance matrixĈ can be replaced by an ensemb
average. The ensemble average of lnZ(l) can be performed
using the replica method.

A. One symmetry-breaking direction

We initially restrict ourselves to the case where

C5s2I1s2ABBT. ~14!

Performing a standard calculation involving replic
@18,19,25# ~see the Appendix! the partition function
^ ln Z(l)&j is approximated~assuming replica symmetry!, for
large N, p5aN, by locating the extrema of the mean-fie
free energy,

2F~q0 ,x,R!5 ln x1
q02R2

x
2a ln~12a21s2x!

1
as2x

s2x2a
2

as2~q01AR2!

s2x2a
2lq0 ,

~15!

where q05N21uufnuu2; n and x5q02q1, with q1
5N21fn•fn8; n,n8Þn being the overlap between differ
ent replica fieldsfn ,fn8 . Similarly R5N21/2B•fn; n is
the overlap between the replica fieldsfn and the symmetry-
breaking directionB.

Saddle point equations are

2
]F

]R
52

2R

x
2

2as2AR

s2x2a
50, ~16!

2
]F

]x
5

1

x
2

q02R2

x2
2

axs4

~s2x2a!2
1

as4~q01AR2!

~s2x2a!2
50,

~17!

2
]F

]q0
52

]F

]x
1

1

x
2

as2

s2x2a
2l50. ~18!

Equation~18! is quadratic inx and has the solutions

x5
1

2ls2
@~s22as21la!

6A~s22as21la!224als2#, ~19!
4-3
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while Eq. ~16! has a solution atR50; a, and a solution
with uRu.0 iff x5as22/(11aA). If R50, then Eq.~17!
yields q05x. The trace trG(l) is then determined by the
value ofq0 at the saddle point and forR50 we have Imq0
5Imx. The contribution that the saddle point atR50 makes
to the density of eigenvaluesr(l) comes from two
sources—an imaginary part ofx arising from the square roo
in Eq. ~19! and the singularity in Eq.~19! at l50. For l
,lmin5s2a21(12Aa)2, the solution branch ofx with the
positive sign before the root in Eq.~19! has the lower value
of ReF for a,1, while for a.1 the branch with the nega
tive sign before the root in Eq.~19! has the lower value o
ReF. For l.lmax5s2a21(11Aa)2 the branch with the
negative sign before the root in Eq.~19! has the lower value
of ReF. For lmin<l<lmax the values ofF for the two
branches ofx are complex conjugates of each other. Taki
Im l52e,0,e!1, this symmetry in ReF at the two solu-
tions of x is broken and the solution with a negative sign
Eq. ~19! has the lower value of ReF. The square root in Eq
~19! can easily be rewritten to give a bulk contribution
r(l), namely,

a

2pls2
A~l2lmin!~lmax2l!, lmin<l<lmax. ~20!

For ulu!1 we can expand the two roots in Eq.~19! as

1

2ls2
@2s2~12a!1O~l2!#,

1

2ls2
@2la1O~l2!#,

~21!

and on using the representation (y2 i e)215PPy21

1 ipd(y) ase→01, the solution with the positive sign be
fore the root in Eq.~19! makes a contributionQ(12a)(1
2a)d(l) to the densityr(l).

WhenuRu.0 we requirex5as22/(11aA) at the saddle
point and Eq.~17! has solution

R2S 11
1

aAD1S 12
1

aA2D ~x2q0!50. ~22!

If uRu.0 we would expect the overlap,q1, between different
replica vectors to be positive as the replicasfn become in-
creasingly aligned with the symmetry-breaking directionB.
With x2q052q1 we can see that a positive solution forR2

is only obtainable ifa.A22. The transition pointa5A22

coincides with the retarded learning phase transition
served in unsupervised learning studies of PCA@18#. The
relationx5as22/(11aA) and Eq.~18! specify two condi-
tions onx and therefore can both be satisfied only at disti
values ofl, namely,

lu5s2~11A!S 11
1

aAD . ~23!

Interestingly,lu given by Eq.~23! agrees with the result fo
the largest PCA eigenvalue obtained in our previous anal
of the learning problem@26#. For l5lu , Eqs.~16! and~18!
02612
-

t

is

specify identical conditions onx and therefore the saddl
point equations can determine values for only two of t
three order parameters. There is in fact a continuous line
saddle points corresponding toq0P@x,`), x5as22/(1
1aA) with R2 given by Eq. ~22!. Note that the line of
saddle points extends toR50 and in effect we have only on
distinct solution branch to the saddle point equations. Alo
this line of saddle points the free energyF is constant. Cor-
respondingly the appropriate HessianH(l) evaluated along
this line of saddle points will have a zero eigenvalue. T
replica partition function can in principle be calculated atl
5lu by diagonalizing the Hessian on the line of sadd
points. Fluctuations orthogonal to the line of saddle poi
can be integrated out, leaving a final integration overq0. In
fact to evaluate the densityr(l) at l5lu we need only to
evaluate the replica partition function atlu2 i e for e→01.
Since forlÞlu only an isolated saddle point atR50 exists,
to obtain O(N21) corrections to the bulk density~20! we
need only to calculate the Hessian atR50. Evaluating the
Hessian at the saddle point withR50 is performed in the
Appendix, and asn→0 gives

ln det H~l!5 1
2 n ln$ 1

4 @a21~lx21!221#%

1n ln@11A2Alx#1O~n2!. ~24!

Only the second term in Eq.~24! depends uponA and can
therefore make a contribution tor(l) with a weight that
changes across the transition point. With Iml52e and x
given by the appropriate solution branch in Eq.~19! this
gives a contribution

1

N
Q~a2ac!d~l2lu!2

1

2Np
Q~l2lmin!Q~lmax2l!

3
@2s2~11A!2l2Almaxlmin#

~l2lu!A~l2lmin!~lmax2l!
. ~25!

It is easily verified that this contribution has zero integr
; a, over the entire range ofl. The first term in Eq.~24!
also gives aO(N21) correction to the bulk eigenvalue den
sity ~20! of the form

N21F1

4
d~l2lmin!1

1

4
d~l2lmax!

2
Q~l2lmin!Q~lmax2l!

2pA~l2lmin!~lmax2l!
G . ~26!

We find that this has zero integral over the interv
@lmin ,lmax#. The correction in Eq.~26! is essentially of the
same form as that derived by Sollich~not within the context
of a replica calculation! for the isotropic case@27,28#, and
similar to the zero integralO(N21) correction to the Wigner
semicircle law for the GOE obtained by Dhesi and Jon
@29#. The correction in Eq.~26! is divergent at the edges o
the bulk density, i.e., atl5lmin ,lmax. For l close to the
spectral edges atlmax,lmin the stationary points represente
by x as given by Eq.~19! are close together. In this regio
4-4
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and at finite values ofN critical-like fluctuations lead to poo
convergence of the naive perturbative expansion ofr(l) in
powers ofN21 @29#. Close to the critical pointslmin ,lmax
the calculation can be rescaled to yield an expression
r(l) that is convergent asl→lmax,lmin , at large finite
values ofN @29,30#. Adapting the work of Dhesi and Jone
@29# we obtain, away from the transition pointAc5a21/2,

r~l5lmax1 d̃N22/3!.
1

p
N21/3S c

A3

2
2c2

A3

6
d̃ D , d̃→0,

~27!

wherec5as22(11Aa)24/3 and uA2a21/2uN1/3@1.
In the main we are interested in the effect the signal co

ponent, specified byA, has upon the observed spectru
rather than the precise form of the edge of the bulk. The
fore in this study for large finiteN the onlyO(N21) correc-
tion to the leading-order result~20! we retain is that due to
the isolated contribution atl5lu , and we approximate the
observed distribution of eigenvalues ofĈ as

r~l!5~12a!Q~12a!d~l!1
1

N
d~l2lu!Q~a2A22!

1@12N21Q~a2A22!#
a

2pls2

3Amax@0,~l2lmin!~lmax2l!#. ~28!

Although the various terms in Eq.~28! are of different or-
ders, with respect toN, the above approximation forr(l)
captures the salient features that we are interested in st
ing. In particular, we regard the transition point ata5ac as
being a phase transition in the expected eigenvalue distr
tion r(l). The contributionQ(a2ac)d(l2lu) has been
derived entirely from theR50 saddle point and no change
the branch of solution to the saddle point equations occ
Despite this the logarithm of the replica partition function
singular, for finiteN, at l5lu and the transition point coin
cides with the phase transition observed in the learning of
symmetry-breaking directionB.

It is interesting to observe that all the terms in the a
proximation ~28! to the expected eigenvalue densityr(l)
have been derived by expanding about the saddle poin
R50. At this saddle pointq150, i.e., different replica fields
fn are uncorrelated. This suggests that the ensemble ave
of the resolvent may be performed as an annealed aver
The annealed average approximates^ ln Z(l)&j by ln^Z(l)&j ,
leading to a mean-field free energy1

2 NFan , with Fan given
by

2Fan~qan ,Ran!5 ln~qan2Ran
2 !

2a ln@12a21s2

3~qan2ARan
2 !#2lqan . ~29!

Hereqan andRan represent the length and overlap withB of
a stochastic vector, and the subscript an is used to denote
these are quantities determined within the context of an
02612
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nealed average. The free energy in Eq.~29! has a minimum
at Ran50. The resulting expression for the leading-ord
contribution to the eigenvalue density is the same as
~20!, and we find anO(N21) correction identical to Eq.~25!.
However anO(N21) correction twice that of Eq.~26! is also
obtained, because the replica-replica overlapqnn8 has non-
negligible fluctuations at the saddle point. Thus the annea
average yields an expression forr(l), which is very similar
but not identical to that obtained from the quenched avera
differing in the precise form of theO(N21) corrections. Al-
though surprising, it has previously been observed that
annealed average leads to the correct leading-order resu
isotropic data@31#. The use of an annealed average is a
implicit within the derivation by Edwards and Jones@20# of
the Wigner semicircle law, since terms involving replic
replica correlations are ultimately dropped from their calc
lation. Within the context of PCA it is somewhat surprisin
that the annealed average yields a similar expression
r(l) as the quenched average, in particular the contribu
Q(a2ac)d(l2lu), since within the context of learning fo
a.ac one hasuR5J•Bu.0 and replica-replica correlation
are nonzero@18,26#. Thus to analyze the performance
learning the actual symmetry-breaking direction, evaluat
the quenched average is essential.

B. Simulation results—one symmetry-breaking direction

Simulations were carried out in order to test the valid
of our analytical results. We have chosenN52000 and set
s251 anda50.5. Figure 1~a! shows the top 20 eigenvalue
from a sample covariance matrix generated according to
~14! with A2510. The highest eigenvalue is clearly sep
rated from the general trend followed by the others. The in
shows the empirical distribution of nonzero eigenvalues~ex-
cept the highest!, with the solid line being the theoretica
distribution of nonzero eigenvalues obtained from Eq.~4!.
One can see that the distribution of the bulk of the eigenv
ues follows the expected behavior. Figure 1~b! shows the top
20 eigenvalues from a sample covariance matrix gener
according to Eq.~14! with A251.5. The highest eigenvalu
follows the same general trend as the others with the bul
the nonzero eigenvalues being distributed according to
~4!—see inset.

We can study the behavior, witha, of D5l12l2, the
gap between the top eigenvaluel1 and the next highest ei
genvaluel2. We have evaluated̂D& by averaging over 1000
simulations, settingA2510 ands251. Plotted in Fig. 2~a!
is ln^D& against lna for a number of different values ofN.
One can clearly see a change in the behavior of^D& as a
increases, witĥD& passing through a minimum atamin . For
these finite values ofN this minimum does not coincide with
the actual predicted transition point ofac50.1. This will be
due, in part, to the fact that at the transition pointac the
separation between the top eigenvaluel1 and the bulk of the
spectrum will be small. Indeed,a will need to be increased
aboveac beforel1 exceeds the typical eigenvalue spacing
the upper tail of the bulk. However for increasingN one can
see from Fig. 2~a! thatamin moves closer to the value ofac ,
with amin.0.135 whenN51000. Fora,amin the behavior
4-5
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FIG. 1. ~a! Plot of eigenvaluel against rank, fors251, N52000,a50.5, andA2510, so thata.ac . Eigenvalues are calculated from

a single instance of the sample covariance matrixĈ. The inset shows the distribution of all nonzero eigenvalues except the largest. The
line corresponds to the distribution of nonzero eigenvalues, obtained from Eq.~4!, whenC is isotropic.~b! As for ~a! except thatA251.5 so
that a,ac . The inset shows distribution of all nonzero eigenvalues and again the solid line corresponds to the case whenC is isotropic.
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appears to be approximately^D&;a21. Soshnikov@8# has
shown that the joint distribution of the eigenvalues of
Wishart matrix converges~as N→`), after a location and
scale transformation of each eigenvalue, to that for the G
The scale transformation consists ofl→l/sN,p , where

sN,p5~N1/21p1/2!~N21/21p21/2!1/3. ~30!

Since for a,ac the distributionr(l) is identical to that
whenC is isotropic, we shall assume that the joint distrib
tion is as for the GOE. Thus for largeN and below the
transition we can expect

^D&5const3a21~11a1/2!~11a21/2!1/3, a,ac .
~31!

Above the transition point we approximate^D& as the differ-
ence betweenlu , given by Eq.~23!, and lmax, the upper
limit of the distribution of the bulk of the remaining eigen
values, i.e.,
02612
E.

-

^D&5s2~11A!S 11
1

aAD2s2~11a21/2!2, a>ac .

~32!

Figure 2~b! shows the simulation results for̂D& for N
51000 replotted from Fig. 2~a!. Also shown in Fig. 2~b! is
the theoretical result from Eqs.~31! and~32!. The constant in
Eq. ~31! has been fitted so that theory and simulation ag
for the smallest value ofa shown. Below the transition poin
of ac50.1 the agreement between theory and simulation
good, apart from the differences due to finiteN aroundac .
Above the transition point there are more obvious finite s
discrepancies between the simulation results and the th
given by Eq.~32!. The theoretical result~32! is constructed
as the difference betweenlu(A) andlmax. For a just above
ac this will be a poor approximation, but as the top eige
value becomes more and more separated from the bulk s
trum, with increasinga, this approximation will become
more accurate. The convergence of the simulation result w
the theoretical result~32! asa increases can clearly be see
in Fig. 2~b!.
FIG. 2. ~a! Plot of ln̂ D& obtained from simulation averages against lna for s251, A2510, and various values ofN. Standard errors
associated with each simulation point are typically less than the size of the plotted symbols.~b! Plot of simulation values of ln̂D& against lna
for s251, A2510, N51000 ~solid circlesd), compared to theoretical values given by Eqs.~31! and ~32! ~crosses1).
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We can also compare the distribution of the top eig
valuel1 with the expected Tracy-Widom distribution whe
C is isotropic. Plotted in Fig. 3 are distributions of rescal
values ofl1 obtained from simulation withN51000 and
s251. For each sample we have centered the median o
sample to 0 and the median absolute deviation~MAD ! to 1.
Johnstone@7# shows that the variance of the largest eige
value of the Wishart matrixXXT scales asN2/3 when C is
isotropic. Thus we expect the variance of the largest eig
value of Ĉ to scale asN24/3 when C is isotropic. WhenC
contains a symmetry-breaking direction we cannota priori
exclude the possibility that any prefactors to the scaling
lation for the variance ofl1 depend uponA. To compare
sample distributions ofl1 above and below the transitio
point a5ac we have therefore applied this location a
scale transformation. The solid line~obtained from a sample
of 100 000 values! corresponds toA2[0 andp550, i.e., the
isotropic case which we expect to correspond to the T
distribution. The dotted line~15 000 values! corresponds to
A2510 and p550, i.e., below the critical value ofac
50.1, while the dashed line~15 000 values! corresponds to
A2510 andp5500, i.e., aboveac . In all cases the prob
ability density is estimated by a histogram with a bin wid
of 0.1. One can see that the differences between the t
distributions of scaled values ofl1 are small, although sta
tistically significant when testing using the Kuiper statis
@32,33# ~a variant of the Kolmogorov-Smirnov test@33#!.

C. Multiple symmetry-breaking directions

Consider the case where we haveS ~orthogonal!
symmetry-breaking directions, i.e.,

C5s2I1s2 (
m51

S

AmBmBm
T , ~33!

where Bm•Bm85dmm8 and without loss of generality we
have ordered the eigenvalues such thatA1.A2.•••.AS
.0. The saddle point approximation ofZn(l) when mul-
tiple symmetry-breaking directions are present inC is
straightforward and the appropriate mean-field free energ

FIG. 3. Plot of distribution of rescaled values of the large
eigenvalue fors251, N51000, anda50.05,ac5` ~solid line!,
a50.05,ac50.1 ~dotted line!, a50.5.ac50.1 ~dashed line!.
02612
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ee

is

2F~q0 ,x,$Rm%m51
S !

5 ln x1

q02(
m

Rm
2

x
2a ln~12a21s2x!1

as2x

s2x2a

2

as2S q01(
m

AmRm
2 D

s2x2a
2lq0 , ~34!

whereq0 and x are defined as before andRm is the replica
symmetric overlap of the replica fieldsfn with Bm . It is
easy to see from the form of the free energy in Eq.~34! that
the saddle point behavior of Eq.~34! will be very similar to
that in the one symmetry-breaking direction case. Spec
cally one has a saddle point atRm50;m. For a.Am

22 and
if l5s2(11Am)(11(1/aAm))5lu(Am), this extends to a
line of saddle points withuRmu.0,Rm850;m8Þm. The dis-
tribution r(l) is now approximated by

r~l!5~12a!Q~12a!d~l!1
1

N (
m51

S

d„l2lu~Am!…

3Q~a2Am
22!1S 12N21 (

m51

S

Q~a2Am
22!D

3
a

2pls2
Amax@0,~l2lmin!~lmax2l!#, ~35!

wherelu(A) is given by Eq.~23!. Again the set of transition
points, a5Am

22 , m51, . . . ,S correspond to phase trans
tions in the equivalent learning problem@34#.

Simulation results again confirm the accuracy of Eq.~35!.
Figure 4~a! shows the top 20 eigenvalues from a sam
covariance matrix generated according to Eq.~33! with three
symmetry-breaking directions present. We have setN
52000,s251, A1

2520, A2
2515, andA3

2510. We have also
seta50.5 so thata is above all the transition points. From
Fig. 4~a! one can see the top three eigenvalues clearly se
rated from the remaining bulk, which still follows the pre
dicted distribution of nonzero eigenvalues given by Eq.~4!—
see inset. Figure 4~b! shows a plot of lnDl against lnN,
whereDl is the fractional difference between the avera
value ^l i&,i 51,2,3, of the top three eigenvalues, and t
theoretical valuelu(Ai), i.e., Dl i5@^l i&2lu(Ai)#/lu(Ai)
@with lu given by Eq.~23!#. We have seta50.2 but all other
parameters are as in Fig. 4~a!. All the average values hav
been estimated from simulation samples of 1000 values,
error bars in Fig. 4~b! are typically less than the size of th
plotted symbols. The differences between the simulation
sults and the theoretical result given by Eq.~23! are small,
but statistically significant. The theoretical result is deriv
from the leading-order asymptotic contribution to the repl
partition function, and so for any finite value ofp andN we

t
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FIG. 4. ~a! Plot of eigenvalue against rank fors251, N52000, a50.5. Three symmetry-breaking directions are present in

covariance matrixC, with A1
2520, A2

2515, A3
2510. Eigenvalues are calculated from a single instance of the sample covariance maĈ.

The inset shows the distribution of all nonzero eigenvalues except the largest three. The solid line corresponds to the distribution
from Eq.~4!, of nonzero eigenvalues whenC is isotropic.~b! Log-Log plot, with increasing lnN, of the difference between simulation value
of ^l i& andlu(Ai) given by Eq.~23! for i 51,2,3. We have seta50.2 but all other parameter values are the same as for~a!. ~c! As for ~b!
but with N51000 anda increasing.~d! Distributions of top three eigenvalues~after median and MAD location and scale transformations
see main text for details!.
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would expect finite size corrections. However, as expec
uDl i u decreases asN→`. Figure 4~b! confirms the
asymptotic accuracy of Eq.~23! at fixed a. In some appli-
cations~see, for example, Ref.@26#! we are interested in how
many samples are required for good accuracy, in which c
we may be more interested in fixingN and varyinga. Figure
4~c! shows a plot ofDl i againsta. We have setN51000,
with all other parameters as in Fig. 4~a!. All the expectation
values have been obtained from simulation samples of 1
values, and error bars in Fig. 4~c! correspond to61 standard
error. We have only plotted results fora.0.1, i.e., the larg-
est of the transition points. Again the differences between
simulation results and theory are small, but statistically s
nificant.

The distributions of the largest eigenvalues would ag
appear to converge to the same distribution~up to location
and scale transformations!. Figure 4~d! shows a plot of the
distributions of the largest three eigenvalues. Again med
and MAD location and scale transformations have been
plied for all three eigenvalues. Here we have setN51000
and a50.2, while all other parameters are as for Fig. 4~a!.
The distributions are histograms of bin width 0.1, evalua
from a sample of 30 000 values. The solid line in Fig. 4~d!
02612
d,

se

0

e
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n

n
p-

d

represents the simulation estimate of the TW distributi
replotted from Fig. 3. The similarity between all four distr
butions is striking, suggesting that there is a universal lim
ing two-parameter family of distributions, irrespective
whether any symmetry-breaking directions are present inC.
As for the one symmetry-breaking direction case, at th
finite values ofN the four different sample distributions ar
statistically significantly different from each other~again us-
ing the Kuiper statistic!.

IV. ANALYSIS OF THE STIELTJES TRANSFORM mr„Z…

Equivalent results to those we have derived using repli
must be implicit within the relation~6! for the Stieltjes trans-
form, mr(z), of a21r(l), particularly since Sengupta an
Mitra @23# derived an equivalent result to Eq.~6! from a
replica formulation of the resolvent ofĈ. Solving formr(z)
in closed form is not necessarily straightforward, howeve
is instructive to confirm that the results derived from t
replica analysis can be obtained from Eq.~6!. We can start
from the expression~6! for the Stieltjes transformmr(z). For
dH(t)5d(t2s2)dt, corresponding toC being isotropic, the
usual distribution of eigenvalues results@14#. Silverstein and
4-8
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FIG. 5. ~a! Schematic plot of the behavior ofz(mr) when the true covariance matrixC is isotropic.~b! Schematic plot of the behavio
of z(mr) when one symmetry-breaking direction, of strengthA, is present in the true covariance matrixC anda.A22.
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Choi @35# show that the support ofr(l) can be determined
from the intervals between extrema ofz(mr). This approach
has been used, in particular by Silverstein and Combe
@36#, to determine the signal component of a spectrum w
a large number variables are present. For the case ofC iso-
tropic, if we considerdH(t)5d(t2s2)dt, a straightforward
calculation yields a single interval,@lmin ,lmax#, for the sup-
port of r(l). Figure 5~a! shows a schematic plot of the be
havior of z(mr) whenC is isotropic.

For the case of a single symmetry-breaking direct
present in C we take dH(t)5(12e)d(t2s2)dt1ed„t
2s2(11A)…dt, with e.1/N. This gives

z~mr!52
1

mr
1

~12e!a21

s221mr

1
ea21

s22~11A!211mr

,

~36!

and stationary points satisfy

05
1

mr
2

2
~12e!a21

~s221mr!2
2

ea21

@s22~11A!211mr#2
. ~37!

Sincee!1 we do not expect the behavior ofz(mr) to be
modified substantially in the interval@lmin ,lmax#. Therefore
we look for additional stationary points close to the singul
ity at mr52s22(11A)21. Setting mr52s22(11A)21

1d and expanding Eq.~37! yields

d56
e1/2

s2~11A!A~a2A22!
1O~e!. ~38!

Substituting Eq. ~38! into Eq. ~36! yields z(2s22(1
1A)211d)5s2(11A)(11(aA)21)1O(e1/2). Thus, as
N→`, if the stationary points at2s22(11A)211d exist,
they will define a small interval ofz centered onlu(A) and
so define an approximate contribution ofN21d„l2lu(A)…
02612
es
n

n

-

to the observed distribution of eigenvalues ofĈ, in agree-
ment with the previous calculations using replicas. From
~38! we see that ford to be real requiresa.A22, in agree-
ment with our previous calculations. Figure 5~b! shows a
schematic plot of the behavior ofz(mr) for the symmetry
brokenC.

A similar perturbative analysis whenC contains more
than one symmetry-breaking direction gives a set of con
butions N21d„l2lu(Am)…,m51, . . . ,S, to r(l). Again
this is in agreement with our previous replica analysis of
resolvent.

The relationship~6! can be obtained with only very wea
convergence conditions placed upon the elements of the
matrix X, and we essentially require only the second m
ment of each of the elements ofĈ to exist. Indeed Bai@37#
gives convergence rates for the Stieltjes transform for a
riety of differing constraints upon the moments of the e
ments ofX. This suggests that the results from the pertur
tive analysis of the Stieltjes transform, and therefore analy
of the replica saddle point equations maybe more gene
extending beyond the case studied here where the sa
vectorsjm are drawn from a multivariate Gaussian distrib
tion. To test this we consider the case where the signal
noise components of the data vectors are drawn from
same zero mean, unit variance distributionf (x), i.e.,

P~z!5dS iz i22 (
m51

S

~z•Bm!2D )
m51

S
1

sAAm

f ~z•Bm /sAAm!,

~39!

P~e!5)
i 51

N

s21f ~ei /s!, ~40!

where ei is the i th component ofe and f (x) satisfies
* f (x)dx50, *x2f (x)dx51. We have performed simula
tions using three different distributions,
4-9
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f ~x!55
1

A2
exp~2A2uxu!, ~ i! Laplace

3

2pA2
S 11

1

8
x6D 21

, ~ ii ! generalized CauchyCGS x;
1

8
,6,5D

A2

p
~11x4!21, ~ iii ! generalized CauchyCG~x;1,4,3!,

~41!

FIG. 6. ~a! Log-Log plot of the fractional errorDl1 of the theoretical estimate of the top eigenvalue for the Laplace distribution~solid

circlesd) and the generalized Cauchy distributionCG(x; 1
8 ,6,5) ~up trianglesm). Here we have fixedA2510, s251, anda50.2. ~b! Plot

of the distribution ofl1 for a number of different distributionsf (x). We have fixedA2510, a50.2, andN5500. The arrow indicates the
value of^l1& given by Eq.~23!.
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where CG(x;a,c,n);(11auxuc)2(11n)/c is the generalized
Cauchy distribution@38,39#. For distribution~i! all moments

of each element ofĈ exist, while for distribution~ii ! the
second moment exists, and for distribution~iii ! only the first

moment of each element ofĈ exists. For simplicity we have
only simulated the one symmetry-breaking direction ca
We have setA2510 (ac50.1) and s251. Figure 6~a!
shows a log-log plot of simulation results~1000 values! for
the fractional errorDl1 of the largest eigenvalue for distr
butions ~i! and ~ii !. In the simulations we have fixeda
50.2.ac . The fractional error is clearly decreasing wi
increasingN, confirming the accuracy of the asymptot
theory given by Eq.~23!, and has approximately the sam
behavior irrespective of which distribution is used. Notic
able is the difference inDl1 from the two distributions at the
smallest value ofN shown. Typical standard errors~not
shown! in Dl1 for the Laplace distribution are 10–20 % o
the plotted value, while for the generalized Cauchy distrib

tion CG(x; 1
8 ,6,5), typical standard errors are 20–40 % of t

plotted values. For the generalized Cauchy distribut
CG(x;1,4,3) the mean simulation value ofl1 is distinctly
different from that predicted by Eq.~23!. Figure 6~b! shows
distributions ofl1 for the different choices off (x): Gauss-

ian ~solid line!, Laplace ~dotted line!, CG(x; 1
8 ,6,5) ~dot-

dashed line!, andCG(x;1,4,3) ~dashed line!. We have fixed
A2510, a50.2, andN5500. Distributions ofl1 are con-
02612
e.

-

-

n

structed as histograms of 10 000 simulation values. The
tribution of l1 obtained from the Laplace distribution an

CG(x; 1
8 ,6,5) are similar to that obtained from the Gauss

case. However the distribution ofl1 obtained from
CG(x;1,4,3) shows a distinct heavy tail.

V. DISCUSSION AND CONCLUSIONS

Evaluation of the resolvent of the sample covariance m
trix Ĉ using the replica method has enabled us to determ
the distribution of eigenvalues,r(l), of Ĉ in the limit N
→`, with p5aN for some fixed value ofa. Most existing
studies consider the case where the elements of the data
trix X are i.i.d., the idea being that such a model serves
provide a null hypothesis forr(l) against which to test the
largest observed eigenvalue of real data sets. However
ultimate motivation for using PCA is to apply it to data se
that have some definite structure. Thus it is instructive
consider the expected eigenvalue distribution when defi
structure is genuinely present in the data, so that bias
eigenvalue estimates can be examined, and the effect o
peatedly using the i.i.d. case as a null model for lower eig
values determined. To this end we have used the rep
method to obtain the distributionr(l) for a particular case
where the elements ofX are not i.i.d. Specifically, when the
population covariance matrixC contains a number o
symmetry-breaking directions then phase transitions in
4-10
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eigenvalue spectrumr(l) are observed. With each transitio
a single eigenvalue detaches from the upper edge of the
of the spectrum. The bulk of the distributionr(l) is still
given by Eq.~4!, i.e., is identical to that for the case whenC
is isotropic. This transition behavior is similar to that o
served in the original replica analysis of a random matrix
Edwards and Jones@20#, although in that case the phase tra
sition was as a result of varying the mean of the Gauss
distribution from which the matrix elements were drawn.

When C is nonisotropic the distributionr(l) can in
theory be determined from its Stieltjes transform,amr , for
which an integral equation has been derived by Marcˇenko
and Pastur@14# and also Wachter@16#. Indeed an equivalen
result for the Stieltjes transformmr has been derived usin
replicas by Sengupta and Mitra@23#. In practice, even when
the eigenvalues ofC are restricted to a finite number of lo
calized values, the solution of the resolvent or Stieltjes tra
form in closed form involves solution of at least a thir
degree polynomial. WhenC contains a finite number o
symmetry-breaking directions, determination of the supp
of r(l) through a perturbative analysis of the integral eq
tion controlling mr is possible, and the results agree w
those obtained from explicit solution of the saddle po
equations of the replica partition function. In contrast to S
gupta and Mitra@23#, explicit solution of the replica saddl
point equations reveals the form of the bulk ofr(l) and the
isolated contributions from the symmetry-breaking directio
present inC. However if the number of symmetry-breakin
directions,S, is also extensive inN, then the saddle poin
evaluation of the replica partition function given in the A
pendix is no longer valid. In these circumstances the dis
bution r(l) must be obtained by analysis of its Stieltj
transform, and one finds that for sufficiently largea the
spectrumr(l) is composed exactly of a separate portion d
to the noise and a separate portion due to the symme
breaking directions@36,40,41#.

The fact that the location of themth transition and the
locus~with Am) of themth eigenvalue does not depend up
the values of the other parameters$Am8%m8Þm suggests tha
testing each of them top eigenvalues separately agains
Tracy-Widom distribution, as Johnstone@7# does, will cor-
rectly select those eigenvalues which are due to gen
symmetry-breaking directions inC. The distribution of the
largest eigenvalue ofĈ would appear to be universal~up to a
location and scale transformation!, irrespective of the value
of A1.

The explicit result for the expectation valuelu(Am)
5s2(11Am)@11(aAm)21# of the mth eigenvalue ofĈ
~whena.Am

22) allows us to correct for the bias due to ha
ing a finite number of samplesp. Thus for those eigenvalue
which we select as being not just the result of the addit
noises2, we can obtain a much more accurate estimate
the true underlying eigenvalue. One should note that the
is nontrivial. The fractional error~in the limit N→`) in the
estimate of themth largest eigenvalue is predicted to b
(aAm)21. Even if one is above the transition point (a
.Am

22) for this eigenvalue to be detected as separated f
the bulk, this only bounds the fractional error in the eige
02612
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value estimate to less thanAm .
Sample covariance matrix spectra also impact upon o

areas in the study of learning, to which the techniques
statistical physics have been applied. For example, the ei
values of the sample covariance matrixĈ determine the op-
timal learning rate within large linear perceptron
@27,28,31,42,43#. Using the self-averaging property of trG
but without specific recourse to replicas, a number of auth
obtain an equivalent result to the Stieltjes transform relati
ship ~6! @27,28,43#, which can be iteratively solved to obtai
the perturbativeO(N21) corrections to the bulk density
r(l). Sollich @27,28# has analyzed finite size effects in th
isotropic case and derived essentially the same form as
~26! for the O(N21) corrections. This approach has be
extended by Halkjær and Winther@43# to the case whenC
contains a definite signal. A similar form to Eq.~28! for r(l)
is derived, containing an isolated contributiond„l2s2(1
1A)…. The location of thed function differs fromlu(A).
However the derivation by Halkjær and Winther essentia
considers the large signal limitA→` and so unsurprisingly
agrees withlu(A) only in this limit. One can confirm that in
general the last term of Eq.~10! of Halkjær and Winther@43#
has a pole atl5lu(A), and that the derivation of Halkjæ
and Winther can be extended to the case whenC contains
more than one symmetry-breaking direction. However to
best of our knowledge the current work represents the
derivation of Eq.~28! using a replica calculation.

APPENDIX

We wish to evaluate the ensemble average

trG~l!52
]

]l
^ ln Z~l!&j . ~A1!

We start with the replica partition functionZ
5(2p)Nn/2^)n51

n exp@ 1
2ln Z(l)#&j , which can be rewritten as

Z5~2p!2Np/2~detC!2p/2E )
m51

p

djm

3expF2
1

2 (
m

jm
TC21jmG E )

n51

n

dfn

3expF2
l

2 (
n

ifni21
1

2p (
n,m

~fn•jm!2G , ~A2!

from which we have

tr G~l!522
]

]l
lim
n→0

]

]n
Z5 lim

n→0

]

]n K (
n

ifni2L , ~A3!

where we have interchanged the order of differentiation
obtain the second expression, and the expectation valu
with respect to the integrand in~A2!. After integrating over
jm we obtain
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Z5E )
n51

n

dfnexpF2
l

2 (
n

ifni2G~detM !2p/2,

~A4!

where~for C5s2I1s2ABBT)

M nn85dnn82s2a21~qnn81ARnRn8!,

Rn5N21/2fn•B,

qnn85N21fn•fn8 . ~A5!

The integrations overfn are performed in terms of inte
grations overRn andqnn8 , i.e.,

E )
n

dfn5E )
n

dfnE )
n

dRnd~Rn2N21/2fn•B!

3E )
n

n8>n

dqnn8d~qnn82N21fn•fn8!.

~A6!

We rewrited functions in terms of their Fourier represent
tions, withR̂n andq̂nn8 being the Fourier variable conjugate
to Rn and qnn8 , respectively. After integrating overfn we
have

Z5~2p!(N2n23)n/2E )
n

dRndR̂n

3E )
n

n8>n

dqnn8dq̂nn8exp~NT!, ~A7!

where the exponentT is given by

T52
l

2 (
n

qnn2
a

2
tr ln M1 i(

n
RnR̂n2

1

2 (
n,n8

Q̂nn8qn8n

2
1

2 (
n,n8

R̂n~Q̂21!nn8R̂n82
1

2
tr ln Q̂. ~A8!

The matrix Q̂ has elementsQ̂nn85 i q̂nn8 . To obtain the
leading-order contribution to the eigenvalue densityr(l) we
integrate over the Fourier variablesR̂n and q̂nn8 , and retain
only terms in the exponent of the integrand that are exten
in N. We also drop any irrelevant prefactors This gives

Z.E )
n

dRnE )
n

n8>n

dqnn8

3expS NF2
l

2 (
n

qnn2
a

2
tr ln M1

1

2
tr ln L G D ,

~A9!
02612
e

whereLnn85 i (qnn82RnRn8). We now look for saddle points
of the exponent of the integrand in Eq.~A9!. Assuming rep-
lica symmetry for such saddle points we put

Rn5R ; n,

qnn5q0 ; n,

qnn85q1 ; n,n8Þn. ~A10!

Settingx5q02q1, the exponent of the integrand become
2 1

2 NnF(q0 ,x,R), with

2F~q0 ,x,R!5 ln x1
q02R2

x
2a ln~12a21s2x!1

as2x

s2x2a

2
as2~q01AR2!

s2x2a
2lq0 . ~A11!

We then seek to find extrema of~A11! with respect toR,q0,
andq1. When more than one symmetry-breaking direction
present inC, i.e., C5s2I1s2(mAmBmBm

T , it is an easy
matter to confirm that

M nn85dnn82s2a21S qnn81(
m

AmRm,nRm,n8D ,

Lnn85 i S qnn82(
m

Rm,nRm,n8D , ~A12!

where Rm,n5N21/2fn•Bm . Assuming replica symmetry
so that Rm,n5Rm ; n the exponent of the integran
in Eq. ~A9! becomes 2 1

2 NnF(q0 ,x,$Rm%m51
S ) with

2F(q0 ,x,$Rm%m51
S ) given by Eq.~34!.

Hessian for RÄ0 saddle point

The free-energy expression in Eq.~A11! has a stationary
point ~see main text! at R50,q05x with x, given by Eq.
~19!. To evaluateO(N21) contributions tor(l) we need to
evaluate the Hessian ofT given by Eq.~A8!. For the saddle
point atR50 evaluation of the HessianH is straightforward
and follows closely that for the perceptron problem@1#. The
Hessian takes a block diagonal form

H5S HQ1HQ2

HQ3HQ4
0

0
HR1HR2

HR3HR4

D . ~A13!

The matricesHQ1 , . . . ,HQ4 ,HR1 , . . . ,HR4 are diagonal,

HQ15S 1

2
x2 In 0

0 2x2 In~n21)/2

D ,
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HQ25HQ35S 1

2
In 0

0 2In(n21)/2

D ,

HQ45S s4a21

2~12s2a21x!2
In 0

0
2s4a21

~12s2a21x!2
In(n21)/2

D ,

HR15
As2

12s2a21x
In ,

HR25HR35 i In ,

HR452xIn ,
o

o-

-

,

s

in

02612
from which we have, after some simplification, two cont
butions to detH,

detH542n@a21~lx21!221#n(n11)/23@11A2Alx#n,

~A14!

wherex is given by Eq.~19!.
When multiple symmetry-breaking directions are pres

in C the Hessian evaluated at the saddle point correspon
to Rm50,m51, . . . ,S, still takes a simple block diagona
form and we find

detH542n@a21~lx21!221#n(n11)/2

3 )
m51

S

@11Am2Amlx#n. ~A15!
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