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Principal-component-analysis eigenvalue spectra from data with symmetry-breaking structure
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Principal component analysi®CA) is a ubiquitous method of multivariate statistics that focuses on the
eigenvalues\. and eigenvectors of the sample covariance matrix of a data set. We copshdelimensional
data vectors drawn from a distribution with covariance mati@ We use the replica method to evaluate the
expected eigenvalue distributiprfA) asN— < with p=aN for some fixeda. In contrast to existing studies
we consider the case whe@econtains a number of symmetry-breaking directions, so that the sample data set
contains some definite structure. Explicitly we et o1 + UZEazlAmBmBL, with A,,>0 V¥ m. We find that
the bulk of the eigenvalues are distributed as for the case when the elemeétarefindependent and
identically distributed. With increasingr a series of phase transitions are observed,aatAr;Z, m
=1,2,... S, each time a singlé function, S(\ —\,(A)), separates from the upper edge of the bulk distri-
bution, wherex ,(A)=o?[1+A][1+ (aA) 1]. We confirm the results of the replica analysis by studying the
Stieltjes transform ofp(\). This suggests that the results obtained from the replica analysis are universal,
irrespective of the distribution from whichis drawn, provided the fourth moment of each elemerg exists.
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[. INTRODUCTION Early work by Andersorn{6] considered the asymptotic
distribution of A in the limit p—o with N finite, i.e., an
The techniques of statistical physics have been appliedncreasing number of sample vectors. For some real applica-
with some success, to the study of many different statisticalions one may havgp<N and so the limit considered by
learning method§1]. Amongst such methods is that of prin- Andersor[6] will be somewhat unrealistic. Study of PCA for
cipal component analysi®®CA) [2] where one aims to dis- more general values af=p/N has been done by applying
cover correlations between the different components of #esults from standard matrix ensembles in random matrix
data set, and thereby provide a means for reducing the contheory[7]. These results have been extended to more general
plexity of the representation of the data. Given a data sesample covariance matric¢8], although it is still only for
consisting ofp, N-dimensional mean centered vectdis,u  the case where the elements®ére i.i.d. Therefore in this
=1,...p, the leading principal components are taken agpaper we aim to explicitly obtain the behavior pf\) for
the eigenvectors of the sample covariance matid, general values ofr and asN— o, when the true covariance

_ p—lzﬂgﬂg;l'u that have the largest eigenvalues—i.e., thosdnatrix C does contain a finite number of symmetry-breaking

directions in the data space along which there is the greategirections.
variation. If we useP principal components to represent
(with los9 the original data set, the leading eigenvectors of Il. MODEL

C are in fact the maximum likelihood choice for reconstruct- b ]
ing the data set. More recently PCA has been recast as a 1€ sample data vecto{g,}, , are considered to con-
latent-variable moddl3], allowing its extension to a mixture tain both a signal and a noise component, i.e.,
of PCA modeld4].
Given a data set the question then remains: how many £,=t,te,, )

principal components of should one retain to model the

true underlying covariance matrig ? Typical methods of \yhare the elements of the noise veaprare i.i.d. with mean

selecting principal components focus on comparing the €izerq and variance. Initially we restrict ourselves to the

genvalues\ of C to the expected distribution of eigenvalues case wherel, is given by a small numbe® of Gaussian
p(\) when the components &, are independent and iden- distributed latent variables corresponding to orthogonal sig-
tically distributed(i.i.d.) [5]. However it would be instructive na| directionsB,,,m=1, ... S. ThUS.QL:E%:lZmBm. with

to determine the expected distributipi) when the com- 7z —N(0,02A,,). Similarly we initially consider thae, is

ponents of¢, are not i.i.d., but when the sample vectdfs  drawn from a Gaussian distributidd(0,021). In this case
are drawn from a distributioR (&) containing a finite num- &, has the Gaussian distribution

ber of symmetry-breaking directions.

P(§)=(2m) V?(detC) Yeexd —3£'C71&, (2
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S where the measurd(t) is defined such thatlfliid!‘ con-
C=0l+022 ABBl, BiBnw=0nw, (3 verges toft‘dH(t)¥ k. An equivalent result is also derived
m=1 by Wachte{16]. From this we can see that if our covariance
matrix C has only a few symmetry-breaking directions, then

whereA,,>0V m. Later we will relax the Gaussian assump- . o ) o )
in the limit N—o the variance along these directions will

tion for the distribution of pattern vectog, . The isotropic _ : o
case corresponds #,=0Y m, and for simplicity we will have zero measure as defined Hy Thus in the limitN

not consider the degenerate case, i.e., we restrict our analysis the distribution of e.|g.envalues IS 'the same as for the
to A;>A,>- - - >Ag>0. We denote the eigenvalues@hby isotropic case. However it is the behavior, at finite but large

{d}.,, so that for the covariance matrix given above N, of _the e_igenyalues corres_ponding to the_few symmetry-
{di}i'“=1=[02(1+A1), L 014AY. 02 ... 0P, The breaking dlr'ectltilns p’)re.senF ia t?art1 wg are n:tergsted in.
le covariance matrix is defined G=p 1S £ & Understanding the distribution of the eigenva ue<ofmay
samp b YT P ZwsuSuallow us to construct more robust hypothesis tests to select
When the eJ?ments o are i.i.d. Gaussiart, is simply (Up  the number of signal components contained within a data set.
to a factorp™ ") the Wishart matrix<X " [9] formed from the At present a number of hypothesis tests use the distribution
data matrixX=(£,, ....&) (or strictly speaking an anti- (4) as the basis for a null hypothesis test on the eigenvalues
Wishart matrix[10] when p<N). We are interested in the of &. For example, Johnstori@] provides an inequality for

o_b;erved distribu.tion of eiger_]valuesmfwhen_l\l Is large but — yhe jikelihood of an individual eigenvalue frofin terms of
finite. The behavior at larg! is often approximated by that 4 - |ikelihood of the leading eigenvalue whenis isotropic.

found in the limitN— o, with p=aN for some fixed. FOr g |eading eigenvalue from the GOE has a Tracy-Widom
<1, Cis singular with a N— p)-fold degenerate zero ei- (Tw) distribution [17] and Johnstoné¢7] has shown that
genvalue. However we are interested in the behavior of thg o ¢ is isotropic, the leading eigenvalue 6falso has a
largest eigenvaslues df and how their average values de- Tracy-Widom distribution. Therefore Johnstone’s inequality
pend upon{A}m—, anda. provides a means of constructing a conservative hypothesis
The elements o€ are random variables and as such test on the observed eigenvaluestf Whether the top ei-
represents a random matrix. The study of the eigenvalugenyalue ofC follows a TW distribution wherC contains
spectra of random matrices has a long his{dd}, with Bai  symmetry-breaking directions is still an open question.
[12] and Forresteet al.[13] providing recent comprehensive  ~ The pehavior of PCA when one symmetry-breaking direc-
reviews of the different aspects of the literature. Often thisjo B is presenfwith variances?(1+ A)] has been studied,
study is restricted to ensembles of matrices that are invariarusing the replica method, in the context of unsupervised
under certain classes of transformation, such as the Gaussigiyning[18,19, where one considers the overl&>-J-B

orthogonal ensembl@&OE). For Wishart matrices the distri- betweerB and the leading principal componehof & One

bution of the largest eigenvalue has been shown to be iden- .
tical to that forgche G(%E[7]. Due to the presence of the observes the phenomenon of retarded learning, wheR&by

symmetry-breaking directions i6 we would not automati- 9;:?}2;0;29;‘ oafocrmlfkf) ?aisz(e)r:;ar;:&ont:edf;col:;:)r?of
cally expect the behavior of the largest eigenvalue in the @ X ulating uiat

ensemble of sample covariance matrices to be equivalent #§€ €igenvalue spectrum Gf in terms of its resolvent leads
that for the GOE, or any of the other common ensembled0 & partition function very similar to that used in the study

studied. of the unsupervised learning performance of PCA, and there-
For the isotropic case the observed distribution of eigenforé suggests using replicas to derive the eigenvalue spec-

values converges to, &¢—c [14,15, trum of C. The trace of the resolverG(\), of the matrixC

is defined as
p(M)=(1=a)O(1—a)s(N)+ Nooq
2mho? rG)=3 @)
=1 A=A,
X \/ma)‘(oy()\_)\min)()\max_h))a (4)

. from which the density of eigenvalugg\) can be calcu-
where Npaxmin=02a Y(1*\a)% Martenko and Pastur |ted as Y g 7N

[14] studied the case of a general covariance matrix and

found that the limiting distribution satisfied p(N)= lim (N7) lmtrG(\—ie). (8)
N
p(\)=lim =~ Hmam (A +ie), (5) <0
0" The first application of replicas to evaluate the expected ei-

genvalue distribution of a random matrix was due to Ed-
wards and Jonef20]. This approach has been extended in
many directions(e.g., sparse random matric¢21] and

wherem,(z) is the Stieltjes transform of: " 1p(\) and is
determined by

1 dH(t) asymmetric random matric¢22]). More recently Sengupta
zZ(m,)=——+ a‘lf — (6) and Mitra[ 23] calculated the resolvef@sN— ) using rep-
m, t7 " +m, licas and found that the resolvent obeys the relation
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1 3 _ 1
7= L ___ . (9) [detA]¥2=(2m) N2 j exr{ ~54"Ad|dd, (12
trG(z2) =1tr G(z)—pd?

It is a trivial matter to confirm that-p~'tr G(z) corre- we have
sponds to the Stieltjes transform,(z) and that Eq(9) is N 1
identical to Eq.(6). The work of Sengupta and Mitr23] In Z()\):2Inf EXF{— 5”¢H2+5 > (¢-£)%|do
demonstrates the utility of using replicas to study the resol- #
vent of C. However, as already mentioned, for finlleand —NIn27. (13

on taking the limitN—o, Eq. (9) predicts a distribution o ) ] _
p(\) identical to the isotropic cagd). Potentially one could The belief is that the eigenvalue spectrum is self-averaging
solve Eq.(6) or (9) at finite N and then take the limit, al- SO that the calculation qf(A)\) for a specific realization of the
though the validity of this approach is uncertain given thatsample covariance matr can be replaced by an ensemble
the relationship$6) and(9) have been obtained by taking the average. The ensemble average aZ(x) can be performed
limit N—<. For S>1 solving for trG(z) involves solution using the replica method.

of a third- (or higher) order polynomial. Thus determining

the distributionp(\) explicitly may be more difficult. A. One symmetry-breaking direction

In this paper we calculate the resolvent @fusing the We initially restrict ourselves to the case where
replica method, but examine the explicit behavior of the
saddle point equations with variation of the parameters C=o?l+0°ABB". (14

{Am}azl- Thus we are able to derive explicit results for the ) _ . . _
expectation values of ths highest eigenvalues, rather than Performing a  standard ~calculation involving  replicas
the more general relationship for the resolvent obtained by18:19.23 (see the Appendix the partition function
Sengupta and Mitrf23]. For the case wher@ contains one (N Z(\))¢ is approximatedassuming replica symmetryfor
symmetry-breaking direction we observe a phase transitioffge N, p=aN, by locating the extrema of the mean-field

in the eigenvalue spectrum @f at «=A"2, thus coinciding free energy,

not unsurprisingly with the transition observed in the order

parameteR? analyzed in unsupervised learning studies. Be-  —F(qg,x,R)=Inx+
low a.=A"2, the calculated spectrum is identical to that
obtained from the isotropic case. Aboweg the bulk of the
spectrum is still identical to that for the isotropic case, but
with a single eigenvaluéhe largest clearly separated from o?X—a o’X—a
the bulk. Transitions in the eigenvalue spectra of random (15)
matrices have also been well documented in other branches

of physics(see, for example, Ref24] for a recent review  where qo=N"Y|¢,||?Y v and x=qy,—q;, with q;
The calculation of the resolvent using replicas can easily be=N"1¢ - ¢,V v,v’' # v being the overlap between differ-
generalized to the situation whe@econtainsS>1 (orthogo-  ent replica fieldse, , ¢, . Similarly R=NY2B. SN vis
nal) symmetry-breaking directions. In this case we observe @he overlap between the replica fields and the symmetry-
series of phase transitions at= A;lz ,m=1,2,...S, each Dpreaking directiorB.

time a single eigenvalue separates from the upper edge of the Saddle point equations are

bulk of the spectrum, which is still the same as for the iso-

_RZ
o —a In(1—a to?x)

ao®  ac?(qy+AR?)

0

tropic case. oF 2R 2ac’AR
-——==———-——=0, (16)
JR X  ox—a
Ill. THEORY
~ _R2 4 4 2
The density of eigenvalugs(\) of the Nx N matrix C _F_1 R exo a0’ (Aot AR -0
can be expressed in terms of its resolvéifh ), X X x? (e?>x—a)?  (o’x—a)?
L (17)
p(N)= |In(')]+m|m tr G(A—ie). (10 IE IE N 1 g - s
€E— —_——_—=— —— _—— — =
ddo X X g>X—a . 18
The trace of the resolver@(\) can be represented as
Equation(18) is quadratic inx and has the solutions
J o J
tr G()\)=Xlnde()\l—C)=—XInZ()\). (11 - , ,
X= 2[(0’ —ao“+\a)
] ] ) 2\No
Using the standard representation of the determinant of a
matrix, +J(c?— acd®+Na)’—daro?], (19
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while Eq. (16) has a solution aR=0V «, and a solution
with |R|>0 iff x=ao ?/(1+ aA). If R=0, then Eq.(17)
yields qp=x. The trace t/G(\) is then determined by the
value ofqq at the saddle point and f&=0 we have Ingq
=Imx. The contribution that the saddle pointRt=0 makes
to the density of eigenvaluep(\) comes from two
sources—an imaginary part wfarising from the square root
in Eq. (19) and the singularity in Eq(19) at A\=0. ForA
<Amin=02a"Y(1—a)?, the solution branch of with the
positive sign before the root in E¢L9) has the lower value
of ReF for <1, while for a>1 the branch with the nega-
tive sign before the root in Eq19) has the lower value of
ReF. For N>\ ya= 02a~ Y(1++a)? the branch with the
negative sign before the root in EG.9) has the lower value
of ReF. For N\ nin=A=<M\,ax the values off for the two

PHYSICAL REVIEW E 69, 026124 (2004

specify identical conditions ox and therefore the saddle
point equations can determine values for only two of the
three order parameters. There is in fact a continuous line of
saddle points corresponding tgye[x,*), x=aoc 2/(1
+aA) with R? given by Eq.(22). Note that the line of
saddle points extends =0 and in effect we have only one
distinct solution branch to the saddle point equations. Along
this line of saddle points the free energyis constant. Cor-
respondingly the appropriate Hessidif\) evaluated along
this line of saddle points will have a zero eigenvalue. The
replica partition function can in principle be calculated\at
=\, by diagonalizing the Hessian on the line of saddle
points. Fluctuations orthogonal to the line of saddle points
can be integrated out, leaving a final integration oygrIn
fact to evaluate the densiy(\) at A=\, we need only to

branches ok are complex conjugates of each other. Takingevaluate the replica partition function g —ie for e—0".

Im A= —¢,0<e<1, this symmetry in RE at the two solu-

Since for\ # )\, only an isolated saddle point Rt=0 exists,

tions of x is broken and the solution with a negative sign into obtain O(N™*) corrections to the bulk densit{20) we

Eqg. (19 has the lower value of Re. The square root in Eq.

need only to calculate the HessianRst 0. Evaluating the

(19) can easily be rewritten to give a bulk contribution to Hessian at the saddle point wilR=0 is performed in the

p(\), namely,

271_)\0_2\/()\_)\min)()\max_}\)- )\ming)\$)\max- (20)

For |\|<1 we can expand the two roots in E49) as

[20%(1—a)+O(N?)], [2Na+O(A?)],

(21)

a? o?

and on using the representationy—<ie) t=PR/ !
+imd(y) ase—0", the solution with the positive sign be-
fore the root in Eq(19) makes a contributio® (1— «)(1
—a) 8(\) to the densityp(\).

When|R|>0 we requirex= e ?/(1+ aA) at the saddle
point and Eq(17) has solution

R? 1+i +
aA

1
1‘@)@—%):0- (22)

If |R|>0 we would expect the overlap;, between different
replica vectors to be positive as the replieas become in-
creasingly aligned with the symmetry-breaking directi®n
With x— o= —q; we can see that a positive solution Rt
is only obtainable ifa>A"2. The transition poine=A"?

coincides with the retarded learning phase transition ob-

served in unsupervised learning studies of PA&]. The
relationx=ao~?/(1+ aA) and Eq.(18) specify two condi-

Appendix, and an—0 gives
In detH\)=3nIn{3[a *(A\x—1)2—1]}

+nin[1+A—ANX]+0O(n?). (24

Only the second term in Ed24) depends upoi and can
therefore make a contribution te(\) with a weight that
changes across the transition point. With Ars — e and x
given by the appropriate solution branch in Eq9) this
gives a contribution

1 1
N(a’_ac) O(N—Ny)— m®()\_)\min)()\max_)\)

% [20'2(1+A)_)\_ VAmad minl
()\_Au)\/()\_)\min)()\max_)\)
It is easily verified that this contribution has zero integral,
V «, over the entire range of. The first term in Eq(24)

also gives aO(N 1) correction to the bulk eigenvalue den-
sity (20) of the form

(29

Nt 150\—)\ i)+ 150\—)\ »)
4 min 4 ma

_ ®()\_)\min)®()\max_)\)
277\/()\_)\min)()\max_)\) .

We find that this has zero integral over the interval

(26)

tions onx and therefore can both be satisfied only at distinc{ A min,Amax]- The correction in Eq(26) is essentially of the

values of\, namely,

1+1
A

Ay=02(1+A) . (23

Interestingly,\, given by Eq.(23) agrees with the result for

same form as that derived by Solli¢hot within the context

of a replica calculationfor the isotropic cas¢27,2§, and
similar to the zero integraD(N 1) correction to the Wigner
semicircle law for the GOE obtained by Dhesi and Jones
[29]. The correction in Eq(26) is divergent at the edges of
the bulk density, i.e., @k =\ pin;Amax- FOr A close to the

the largest PCA eigenvalue obtained in our previous analysispectral edges at,.x, A min the stationary points represented

of the learning problemi26]. ForA=\,, Egs.(16) and(18)

by x as given by Eq(19) are close together. In this region
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and at finite values dN critical-like fluctuations lead to poor nealed average. The free energy in E2P) has a minimum
convergence of the naive perturbative expansiop(af) in at R,,=0. The resulting expression for the leading-order
powers ofN~1 [29]. Close to the critical point& min,Amax  CONtribution to the eigenvalue density is the same as Eq.
the calculation can be rescaled to yield an expression fof20), and we find atO(N 1) correction identical to Eq25).
p(\) that is convergent ad& —\max,Amin, at large finite  However anrO(N 1) correction twice that of E¢26) is also
values ofN [29,30. Adapting the work of Dhesi and Jones obtained, because the replica-replica overdgp has non-
[29] we obtain, away from the transition poiAt= a2, negligible fluctuations at the saddle point. Thus the annealed
average yields an expression fafA), which is very similar
_ o L s V3 2 V3. - but not identical to that obtained from the quenched average,
PIN=Nmaxt N7 =N ¢c5 ¢ g9 -0 differing in the precise form of th©(N~1) corrections. Al-
(27)  though surprising, it has previously been observed that the
annealed average leads to the correct leading-order result for
wherec=ao 2(1+\a) ** and|A—a~YIN"3>1, isotropic data[31]. The use of an annealed average is also
In the main we are interested in the effect the signal COMimplicit within the derivation by Edwards and Jon&g] of
ponent, specified byA, has upon the observed spectrum,the Wigner semicircle law, since terms involving replica-
rather than the precise form of the edge of the bulk. Therereplica correlations are ultimately dropped from their calcu-
fore in this study for large finité the onlyO(N™*) correc-  |ation. Within the context of PCA it is somewhat surprising
tion to the leading-order resul20) we retain is that due to  that the annealed average yields a similar expression for
the isolated contribution &=\, , and we approximate the () as the quenched average, in particular the contribution
observed distribution of eigenvalues Gfas O(a—a)5(A—X\,), since within the context of learning for
a>a. one hajR=J-B|>0 and replica-replica correlations
are nonzerg18,26. Thus to analyze the performance of
learning the actual symmetry-breaking direction, evaluating
the quenched average is essential.

PV =(1-)B(1- )80 + AN ~A)O(a—AD

+[1-N"1O(a—A"?)] 5
2T\No B. Simulation results—one symmetry-breaking direction

X Max 0,(A = X in) (N max— M) 1. (28) Simulations were carried out in order to test the validity
of our analytical results. We have chosiir=2000 and set

Although the various terms in E428) are of different or- ¢?=1 anda=0.5. Figure 1a) shows the top 20 eigenvalues
ders, with respect td\, the above approximation fgs(\) from a sample covariance matrix generated according to Eq.
captures the salient features that we are interested in studyt4) with A=10. The highest eigenvalue is clearly sepa-
ing. In particular, we regard the transition pointe&at a. as  rated from the general trend followed by the others. The inset
being a phase transition in the expected eigenvalue distribishows the empirical distribution of nonzero eigenval(es
tion p(\). The contribution® (a— «) d(A—\,) has been cept the highest with the solid line being the theoretical
derived entirely from th&=0 saddle point and no change in distribution of nonzero eigenvalues obtained from E4).
the branch of solution to the saddle point equations occur€One can see that the distribution of the bulk of the eigenval-
Despite this the logarithm of the replica partition function is ues follows the expected behavior. Figue)lshows the top
singular, for finiteN, atA =\, and the transition point coin- 20 eigenvalues from a sample covariance matrix generated
cides with the phase transition observed in the learning of thaccording to Eq(14) with A2=1.5. The highest eigenvalue
symmetry-breaking directioB. follows the same general trend as the others with the bulk of

It is interesting to observe that all the terms in the ap-the nonzero eigenvalues being distributed according to Eq.
proximation (28) to the expected eigenvalue denspy\) (4)—see inset.
have been derived by expanding about the saddle point at We can study the behavior, with, of A=\;—X\,, the
R=0. At this saddle pointj;=0, i.e., different replica fields gap between the top eigenvalig and the next highest ei-
¢, are uncorrelated. This suggests that the ensemble averagenvaluex,. We have evaluate@\) by averaging over 1000
of the resolvent may be performed as an annealed averagsimulations, settingA>=10 ando?=1. Plotted in Fig. 2a)
The annealed average approximatEsZ(\)), by In(ZZ(\)),, is In(A) against In for a number of different values dfl.
leading to a mean-field free energiNF,,, with F,, given ~ One can clearly see a change in the behavio¢/of as «

by increases, witjA) passing through a minimum at,;,. For
5 these finite values dfl this minimum does not coincide with

—Fan(dan,Ran) =IN(dan—RZ,) the actual predicted transition point af=0.1. This will be

o IN[1-a to? due, in part, to the fact that at the transition point the

separation between the top eigenvalyeand the bulk of the
x(qan_ARgn)]_)\qan_ (29 spectrum will be small. Indeedy will need to be increased

abovea, before\ ; exceeds the typical eigenvalue spacing in
Hereq,, andR,, represent the length and overlap wiglof ~ the upper tail of the bulk. However for increasiNgone can
a stochastic vector, and the subscript an is used to denote thsgie from Fig. 2a) that «,,;, moves closer to the value of. ,
these are quantities determined within the context of an anwith a,;;=0.135 wherN=1000. Fora< a,;, the behavior
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FIG. 1. (a) Plot of eigenvalue. against rank, for?=1, N=2000,«=0.5, andA?= 10, so thatx> «. . Eigenvalues are calculated from
a single instance of the sample covariance mairiXhe inset shows the distribution of all nonzero eigenvalues except the largest. The solid
line corresponds to the distribution of nonzero eigenvalues, obtained frofd)EghenC is isotropic.(b) As for (a) except thath?=1.5 so
that a<a.. The inset shows distribution of all nonzero eigenvalues and again the solid line corresponds to the caSdswhketropic.

appears to be approximatefA)~ « 1. Soshnikov[8] has ) 1 ) P
shown that the joint distribution of the eigenvalues of a (A)=0“(1+A) I+ 3| ~o"Q+a ™% a=ac.

Wishart matrix convergegas N—x), after a location and (32)
scale transformation of each eigenvalue, to that for the GOE.
The scale transformation consists)of-\/ay ,, where Figure 2b) shows the simulation results fafA) for N
=1000 replotted from Fig. (@). Also shown in Fig. &) is
on,p= (NV2+ plA (N~ V24 p~ 1215, (30)  the theoretical result from Eq&31) and(32). The constant in

Eqg. (31) has been fitted so that theory and simulation agree
for the smallest value ot shown. Below the transition point
of a.=0.1 the agreement between theory and simulation is
good, apart from the differences due to finMearounde, .
Above the transition point there are more obvious finite size
discrepancies between the simulation results and the theory
_ B given by EQ.(32). The theoretical result32) is constructed
(A)=conska H(1+a'?)(1+a Y9 a<a. as the difference between,(A) and\ 4. Fora just above
(3D a. this will be a poor approximation, but as the top eigen-
value becomes more and more separated from the bulk spec-

Above the transition point we approximat&) as the differ-  trum, with increasinga, this approximation will become
ence between,, given by Eq.(23), and\,.y, the upper more accurate. The convergence of the simulation result with
limit of the distribution of the bulk of the remaining eigen- the theoretical resul{32) as« increases can clearly be seen

Since for a<a. the distributionp(\) is identical to that
whenC is isotropic, we shall assume that the joint distribu-
tion is as for the GOE. Thus for largd and below the
transition we can expect

values, i.e., in Fig. 2(b).
3 T T T T 2 o T T T T T T T
o 4
. ¥ N=200 @) 1 o ®
o o N=300 3 . .
oL + m N=400 - oL J _
o o N=500 Co,
A ° ° ® N=1000 é *oe .
<] o -1 -
\'% o + \4 ++ J
= 1F . : o + . In o . i= 5L +++ ]
$ %, I In O+
i om
e © 3 . SimulationN:lOOO‘ * ]
ok + Theory +
4+ -
_ . 1 . l Ly . l
3 ! 25 4 3 ) 1

In o

FIG. 2. (a) Plot of I{A) obtained from simulation averages againsi Ifor o?=1, A2=10, and various values M. Standard errors
associated with each simulation point are typically less than the size of the plotted syfibBlst of simulation values of i) against In
for o?=1, A?=10, N=1000(solid circles®), compared to theoretical values given by E@i) and(32) (crossest+).
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- F(QOixa{Rm}azl)

qO_E ern 2
m aoX
=Inx+ —aln(l-a to?x)+
OX—«o
ac? qo-i-z AmR%>
m
- 5 —N\do, (34
TOX—«

whereq, andx are defined as before amy}, is the replica
symmetric overlap of the replica field$, with B,,.

It is

FIG. 3. Plot of distribution of rescaled values of the largesteasy to see from the form of the free energy in B4) that

eigenvalue forr?=1, N=1000, anda=0.05< a,= (solid line),
a=0.05<a,=0.1(dotted ling, «=0.5>a,=0.1 (dashed ling

the saddle point behavior of E(B4) will be very similar to
that in the one symmetry-breaking direction case. Specifi-
cally one has a saddle point Bt,=0Vm. For a>A,;2 and

We can also compare the distribution of the top eigenif \ = g2(1+A,))(1+ (L/aA.)) =\y(A,), this extends to a
value\; with the expected Tracy-Widom distribution when |ine of saddle points withR,,|>0,R,,, = 0¥ m’ #m. The dis-
C is isotropic. Plotted in Fig. 3 are distributions of rescaledtripution p(\) is now approximated by

values of\; obtained from simulation witiN=1000 and

o?=1. For each sample we have centered the median of the

sample to 0 and the median absolute deviatidAD) to 1.

Johnstond 7] shows that the variance of the largest eigen-

value of the Wishart matriXX T scales asN?3 when C is

1 S
PN=(1=@)0(1-a) 500+ G 2 00— N\y(Am))

isotropic. Thus we expect the variance of the largest eigen- s

value of C to scale asN~*® when C is isotropic. WhenC
contains a symmetry-breaking direction we canaqtriori

exclude the possibility that any prefactors to the scaling re-

lation for the variance of; depend uporA. To compare
sample distributions of; above and below the transition

point «=«, we have therefore applied this location and

scale transformation. The solid lifebtained from a sample
of 100 000 valuescorresponds té\°>=0 andp=>50, i.e., the

XO(a—A )+ 1-N"1> O(a—A,?
m=1

o

2m\a?

X \/ma){or()\_)\min)(kmax_)\)]: (35)

where\ ,(A) is given by Eq(23). Again the set of transition

isotropic case which we expect to correspond to the TWpoints, @=A.?, m=1,... S correspond to phase transi-

distribution. The dotted lin€15 000 values corresponds to
A?=10 and p=50, i.e., below the critical value ofy,

=0.1, while the dashed lin€l5 000 valuescorresponds to
A?=10 andp=>500, i.e., abover.. In all cases the prob-

tions in the equivalent learning probleig4].

Simulation results again confirm the accuracy of &%).
Figure 4a) shows the top 20 eigenvalues from a sample
covariance matrix generated according to &9) with three

ability density is estimated by a histogram with a bin width Symmetry-breaking directions present. We have 8kt
of 0.1. One can see that the differences between the three2000,02=1, A7=20, A3=15, andA3=10. We have also

distributions of scaled values af;, are small, although sta-

seta=0.5 so thate is above all the transition points. From

tistically significant when testing using the Kuiper statistic Fig. 4@ one can see the top three eigenvalues clearly sepa-

[32,33 (a variant of the Kolmogorov-Smirnov tes23]).

C. Multiple symmetry-breaking directions

Consider the case where we hav (orthogona)
symmetry-breaking directions, i.e.,

S

C=0o?l+ Uzmzzl AmBmBI (33

where B,,,- B,y =y and without loss of generality we
have ordered the eigenvalues such tAgt-A,>--->Ag
>0. The saddle point approximation @f'(\) when mul-
tiple symmetry-breaking directions are present @nh is

rated from the remaining bulk, which still follows the pre-
dicted distribution of nonzero eigenvalues given by &o—

see inset. Figure (B) shows a plot of IMA\ against Ir\,
where A\ is the fractional difference between the average
value (\;),i=1,2,3, of the top three eigenvalues, and the
theoretical valuex (A;), i.e., ANi=[{N) = Ny(A) N G(A)
[with A, given by Eq.(23)]. We have setv=0.2 but all other
parameters are as in Fig(ak All the average values have
been estimated from simulation samples of 1000 values, and
error bars in Fig. &) are typically less than the size of the
plotted symbols. The differences between the simulation re-
sults and the theoretical result given by Eg3) are small,

but statistically significant. The theoretical result is derived
from the leading-order asymptotic contribution to the replica

straightforward and the appropriate mean-field free energy ipartition function, and so for any finite value pfandN we
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FIG. 4. (8 Plot of eigenvalue against rank far’=1, N=2000, «=0.5. Three symmetry-breaking directions are present in the
covariance matrixC, with AZ=20, A2=15, A2=10. Eigenvalues are calculated from a single instance of the sample covarianceGnatrix
The inset shows the distribution of all nonzero eigenvalues except the largest three. The solid line corresponds to the distribution, obtained
from Eq.(4), of nonzero eigenvalues whéhis isotropic.(b) Log-Log plot, with increasing I, of the difference between simulation values
of (\;) and\,(A;) given by Eq.(23) for i=1,2,3. We have sat=0.2 but all other parameter values are the same a@fofc) As for (b)
but with N=1000 andw increasing(d) Distributions of top three eigenvaluésfter median and MAD location and scale transformations—
see main text for details

would expect finite size corrections. However, as expectedepresents the simulation estimate of the TW distribution,
|AN;| decreases asN—w. Figure 4b) confirms the replotted from Fig. 3. The similarity between all four distri-
asymptotic accuracy of Eq23) at fixed @. In some appli- butions is striking, suggesting that there is a universal limit-
cations(see, for example, Relf26]) we are interested in how ing two-parameter family of distributions, irrespective of
many samples are required for good accuracy, in which casehether any symmetry-breaking directions are presef.in
we may be more interested in fixifdjand varyinga. Figure  As for the one symmetry-breaking direction case, at these
4(c) shows a plot ofA\; againsta. We have seN=1000, finite values ofN the four different sample distributions are
with all other parameters as in Fig(al All the expectation statistically significantly different from each oth@gain us-
values have been obtained from simulation samples of 100g the Kuiper statistic
values, and error bars in Fig(e} correspond ta- 1 standard
error. We have only plotted results far>0.1, i.e., the larg-
est of the transition points. Again the differences between the . . ) .
simulation results and theory are small, but statistically sig- Equivalent results to those we have derived using replicas
nificant. must be implicit within the relatior6) for the Stieltjes trans-
The distributions of the largest eigenvalues would agaiform. M,(2), of @ *p()), particularly since Sengupta and
appear to converge to the same distributiap to location ~ Mitra [23] derived an equivalent result to E¢6) from a
and scale transformationsFigure 4d) shows a plot of the replica formulation of the resolvent @&. Solving form,(z)
distributions of the largest three eigenvalues. Again mediain closed form is not necessarily straightforward, however it
and MAD location and scale transformations have been aps instructive to confirm that the results derived from the
plied for all three eigenvalues. Here we have Net 1000 replica analysis can be obtained from E6). We can start
and = 0.2, while all other parameters are as for Fige4 from the expressiof(6) for the Stieltjes transforrm,(z). For
The distributions are histograms of bin width 0.1, evaluateddH(t) = 8(t— o?)dt, corresponding t&€ being isotropic, the
from a sample of 30000 values. The solid line in Fi¢gd)4 usual distribution of eigenvalues resulist]. Silverstein and

IV. ANALYSIS OF THE STIELTJES TRANSFORM m,(Z)
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FIG. 5. (a) Schematic plot of the behavior a{m,) when the true covariance matri is isotropic.(b) Schematic plot of the behavior
of z(m,) when one symmetry-breaking direction, of strengthis present in the true covariance matéxand a>A"2,

Choi [35] show that the support gf(\) can be determined
from the intervals between extremaz{in,). This approach

to the observed distribution of eigenvalues@f in agree-
ment with the previous calculations using replicas. From Eq.

has been used, in particular by Silverstein and Combette@s) we see that fob to be real requires>A 2, in agree-
[36], to determine the signal component of a spectrum Whefhent with our previous calculations. Figurébb shows a

a large number variables are present. For the casg ieb-
tropic, if we considedH(t) = 8(t— o?)dt, a straightforward
calculation yields a single intervdl\ ,in,Amax], for the sup-
port of p(\). Figure 3a) shows a schematic plot of the be-
havior ofz(m,) whenC is isotropic.

For the case of a single symmetry-breaking directio
present inC we take dH(t)=(1—¢)d(t—o?)dt+ed(t
—o?(1+A))dt, with e=1/N. This gives

(1-e)a™? -1

(m) 1 N e
z(m,))=—— ,
oMy 0 24m, o 3(1+A) t+m,
(36)
and stationary points satisfy
B 1 (1-e)a? ea !
= 5. (37)

2 _ - _ _
m> (o ?+m,)? [o %(1+A)" *+m,]

Since e<1 we do not expect the behavior afm,) to be
modified substantially in the intervph in,Amaxl- Therefore

we look for additional stationary points close to the singular-

ity at m,=—o %(1+A)" L. Settingm,=-o %(1+A)!
+ 6 and expanding Eq.37) yields

E1/2

S5==*
AA(1+A)(a—A?)

+0(e). (39)

Substituting Eq. (38) into Eq. (36) vyields z(—o ?(1
+A) 1+ 8)=0?(1+A)(1+(aA) " H+0(e¥?. Thus, as
N—oo, if the stationary points at o~ 2(1+A) 1+ & exist,
they will define a small interval of centered om\ ,(A) and
so define an approximate contribution M 15\ — X ,(A))

schematic plot of the behavior @(m,) for the symmetry
brokenC.

A similar perturbative analysis whe@ contains more
than one symmetry-breaking direction gives a set of contri-
butions N"18(\ =\ (Ap).m=1,...S, to p(\). Again

Mthis is in agreement with our previous replica analysis of the

resolvent.

The relationshig6) can be obtained with only very weak
convergence conditions placed upon the elements of the data
matrix X, and we essentially require only the second mo-

ment of each of the elements 6fto exist. Indeed Baj37]
gives convergence rates for the Stieltjes transform for a va-
riety of differing constraints upon the moments of the ele-
ments ofX. This suggests that the results from the perturba-
tive analysis of the Stieltjes transform, and therefore analysis
of the replica saddle point equations maybe more general,
extending beyond the case studied here where the sample
vectors§, are drawn from a multivariate Gaussian distribu-
tion. To test this we consider the case where the signal and
noise components of the data vectors are drawn from the
same zero mean, unit variance distributidw), i.e.,

S S
1
= 2— . 2 . g

P(0) 5(||§|| 2, (€8 | 1L —= (L BuloAn),
(39

N
P =]1 o (e /o), (40)

i=1

where g, is the ith component ofe and f(x) satisfies
[f(x)dx=0, [x?f(x)dx=1. We have performed simula-
tions using three different distributions,
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FIG. 6. (a) Log-Log plot of the fractional erroA\ ; of the theoretical estimate of the top eigenvalue for the Laplace distrib(gadiul

circles@®) and the generalized Cauchy distributicg(x; %,6,5) (up trianglesA ). Here we have fixe#?=10, ¢°=1, anda=0.2. (b) Plot
of the distribution ofx ; for a number of different distributionf(x). We have fixedA?= 10, «=0.2, andN=500. The arrow indicates the

value of(\,) given by Eq.(23).
(1
V2

3

277\/5

V2 .
?(1+X4) 1,

exp(—V2[x)), (D)

f(x)=

-1
1+ %xe) i)

(iii)

\

where Cg(x;a,c,v)~(1+a|x|¢) (/¢ is the generalized
Cauchy distributiorf38,39. For distribution(i) all moments

of each element of exist, while for distribution(ii) the
second moment exists, and for distributi@in) only the first

moment of each element &f exists. For simplicity we have

Laplace

- 5,6,5) (41)

generalized CaucthG( X; s

generalized Cauch@€s(x;1,4,3),

structed as histograms of 10 000 simulation values. The dis-
tribution of A\, obtained from the Laplace distribution and
Cs(x;3,6,5) are similar to that obtained from the Gaussian
case. However the distribution of; obtained from
Cq(x;1,4,3) shows a distinct heavy tail.

only simulated the one symmetry-breaking direction case.

We have setA’=10 (a,=0.1) and o?=1. Figure &a)
shows a log-log plot of simulation resul(000 values for
the fractional errorA\ ; of the largest eigenvalue for distri-
butions (i) and (ii). In the simulations we have fixed
=0.2>«a.. The fractional error is clearly decreasing with
increasingN, confirming the accuracy of the asymptotic
theory given by Eq(23), and has approximately the same

behavior irrespective of which distribution is used. Notice-

able is the difference iA\; from the two distributions at the
smallest value ofN shown. Typical standard errorgot
shown in A\, for the Laplace distribution are 10-20 % of
the plotted value, while for the generalized Cauchy distribu

V. DISCUSSION AND CONCLUSIONS

Evaluation of the resolvent of the sample covariance ma-
trix C using the replica method has enabled us to determine

the distribution of eigenvalueg(\), of € in the limit N

—oo, with p=aN for some fixed value ofr. Most existing
studies consider the case where the elements of the data ma-
trix X are i.i.d., the idea being that such a model serves to
provide a null hypothesis fos(\) against which to test the
largest observed eigenvalue of real data sets. However the
ultimate motivation for using PCA is to apply it to data sets
that have some definite structure. Thus it is instructive to

consider the expected eigenvalue distribution when definite

tion Cg(x;5,6,5), typical standard errors are 20_49 %_Of t_hestructure is genuinely present in the data, so that bias in
plotted values. For the generalized Cauchy distributionjgenyalue estimates can be examined, and the effect of re-

Cq(x;1,4,3) the mean simulation value af; is distinctly
different from that predicted by E¢23). Figure b) shows
distributions of\, for the different choices of (x): Gauss-
ian (solid line), Laplace (dotted ling, Cg(x;35,6,5) (dot-
dashed ling andCg(x;1,4,3) (dashed ling We have fixed
A?2=10, «=0.2, andN=>500. Distributions of\; are con-

peatedly using the i.i.d. case as a null model for lower eigen-
values determined. To this end we have used the replica
method to obtain the distributiop(\) for a particular case
where the elements of are not i.i.d. Specifically, when the
population covariance matrixC contains a number of
symmetry-breaking directions then phase transitions in the
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eigenvalue spectrum(\) are observed. With each transition value estimate to less thaky,.

a single eigenvalue detaches from the upper edge of the bulk Sample covariance matrix spectra also impact upon other
of the spectrum. The bulk of the distributiqgr()\) is still areas in the study of learning, to which the techniques of
given by Eq.(4), i.e., is identical to that for the case when  statistical physics have been applied. For example, the eigen-
is isotropic. This transition behavior is similar to that ob- values of the sample covariance mat@ixdetermine the op-
served in the original replica analysis of a random matrix bytimal learning rate within large linear perceptrons
Edwards and Jong&0], although in that case the phase tran-[27,28,31,42,4B Using the self-averaging property ofGr
sition was as a result of varying the mean of the Gaussialut without specific recourse to replicas, a number of authors
distribution from which the matrix elements were drawn. Obtain an equivalent result to the Stieltjes transform relation-

When C is nonisotropic the distributiorp(\) can in  ship(6) [27,28,43, which can be iteratively solved to obtain
theory be determined from its Stieltjes transforam,, for  the perturbativeO(N™*) corrections to the bulk density
which an integral equation has been derived by dako  p(N). Sollich[27,28 has analyzed finite size effects in the
and Pastuf14] and also Wachtef16]. Indeed an equivalent isotropic case and derived e;ssential_ly the same form as Eq.
result for the Stieltjes transform,, has been derived using (26) for the O(N™") corrections. This approach has been
replicas by Sengupta and Mitfa3]. In practice, even when extended by Halkjeer and Winthg43] to the case wheiC
the eigenvalues of are restricted to a finite number of lo- contains a definite signal. A similar form to E8) for p(\)
calized values, the solution of the resolvent or Stieltjes transis derived, containing an isolated contributidit\ — (1
form in closed form involves solution of at least a third- +A)). The location of thes function differs from(A).
degree polynomial. WheIi€ contains a finite number of However the derivation by Halkjeer and Winther essentially
symmetry-breaking directions, determination of the supporgonsiders the large signal limk—-co and so unsurprisingly
of p(\) through a perturbative analysis of the integral equa-2grees withh ,(A) only in this limit. One can confirm that in
tion controlling m, is possible, and the results agree with general the last term of E¢L0) of Halkjeer and Winthef43]
those obtained from explicit solution of the saddle pointhas a pole ah=\,(A), and that the derivation of Halkjeer
equations of the replica partition function. In contrast to Sen@nd Winther can be extended to the case wiiecontains
gupta and Mitrg 23], explicit solution of the replica saddle more than one symmetry-breaking direction. However to the
point equations reveals the form of the bulkggf) and the  best of our knowledge the current work represents the first
isolated contributions from the symmetry-breaking directionsderivation of Eq.(28) using a replica calculation.
present inC. However if the number of symmetry-breaking
directions, S, is also extensive i, then the saddle point APPENDIX
evaluation of the replica partition function given in the Ap-
pendix is no longer valid. In these circumstances the distri- We wish to evaluate the ensemble average
bution p(A) must be obtained by analysis of its Stieltjes
transform, and one finds that for sufficiently large the
spectrump(\) is composed exactly of a separate portion due rG(A)=— X“” Z(\))g- (A1)
to the noise and a separate portion due to the symmetry-
breaking direction$36,40,41].

The fact that the location of theth transition and the
locus(with A,,;) of themth eigenvalue does not depend upon — (2m
the values of the other parametéis,, } v «m Suggests that
testing each of then top eigenvalues separately against a
Tracy-Widom distribution, as Johnstoh@] does, will cor- =(2m)~NP*(detC)~ plzf H dg,
rectly select those eigenvalues which are due to genuine

We start with the replica partition functionZ
YNVHIT)_ 1 exd 3In Z(\) ], which can be rewritten as

symmetry-breaking directions i€. The distribution of the n
largest eigenvalue & would appear to be universalp to a xexp{ ) % glcflgu f VHI do,
location and scale transformationrrespective of the value
of A;. A , 1 )
The explicit result for the expectation value,(Am) Xexr{—zzj bl +%§L (b, €7, (A2)

=0?(1+A)[1+(aA,) 1] of the mth eigenvalue ofC

(whena>A_?) allows us to correct for the bias due to hav- from which we have
ing a finite number of samplgs Thus for those eigenvalues
which we select as being not just the result of the additive P P
noise g%, we can obtain a much more accurate estimate of  tr G(\)= —2--lim—- 2= I|m—< > ||¢V||2> (A3)

the true underlying eigenvalue. One should note that the bias INn_o? n—09

is nontrivial. The fractional errofin the limit N—) in the

estimate of themth largest eigenvalue is predicted to be where we have interchanged the order of differentiation to
(aAm) . Even if one is above the transition pointx( obtain the second expression, and the expectation value is
>A, %) for this eigenvalue to be detected as separated fromwith respect to the integrand i#2). After integrating over

the bulk this only bounds the fractional error in the eigen-£§, we obtain
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whereL ,,,=i(q,, —R,R,). We now look for saddle points
(detM) P2, of the exponent of the integrand in E\9). Assuming rep-
lica symmetry for such saddle points we put

! N
z=| 11 d@exn{ -5 2 o>

14

(A4)
where(for C= o2l + 0?ABBT) R,=RV v,
MVV':5VV’_0-2a71(QVV’+ARVRV’)’ qVV:qOV v
RV:N_1/2¢V'B! qVV/:q]_V V,V’?ﬁv. (AlO)
9, =N"16, b, . (A5) Settingx=0y—(,, the exponent of the integrand becomes

—2NnF(qgo,x,R), with

The integrations ovetp, are performed in terms of inte-

. , . _R
grations ovelR, andq,,, i.e., CE(qo xR =Inx+ do

2 aa®x

—aln(l—a o))+
oOX—«

J W= [ I as. | IT arom,-n-20, 0 AR

5 NQg- (A11)
oX—«a
X f H dqvv"s(qvv/ - N71¢V. ¢v/)'
s We then seek to find extrema @&11) with respect tdR,qg,
e andqg;. When more than one symmetry-breaking direction is
(AB)  present inC, i.e., C= 0?1+ 023 ,AnBnBl, it is an easy

. . . . . matter to confirm that
We rewrite § functions in terms of their Fourier representa-

tions, withR, andq,,, being the Fourier variable conjugates
to R, andq,, , respectively. After integrating ovap, we M,, = 5V,,/—02al(qwr+2 AmRm,VRm,V/),
have m
Z:(ZW)(N_n_s)nIZJ ]_—_[ dR dAR LVV':i(qVV’_E Rm,yRm,y’)1 (AlZ)
» 14 14 m
- where R, ,=N"2¢,.B. Assuming replica symmetry
Xf 1:[ dg,, dq,, exp(NT), (A7) so that R, , =R,V v the exponent of the integrand

V= in Eg. (A9) becomes —3NnF(go,X,{Rmi5_;) with

o ~F(do.X.{Rm}m-1) given by Eq.(34).
where the exponerni is given by

Hessian forR=0 saddle point

N a . .1 ~
T=-3 EV: 4y~ StrInM +|§V: RR,=3 2 Quulyry The free-energy expression in E@11) has a stationary
ny point (see main tejtat R=0,go=x with X, given by Eq.
1 £ oAl oA 1 R (19). To evaluateO(N 1) contributions top(\) we need to
-3 2’ R,(Q )Ry = 5trinQ. (A8)  evaluate the Hessian dfgiven by Eq.(A8). For the saddle
nr point atR=0 evaluation of the Hessiat is straightforward

oA . - ) and follows closely that for the perceptron problgth. The
The matrix Q has element€Q,, =iq,, . To obtain the pHegssian takes a block diagonal form
leading-order contribution to the eigenvalue denpity) we

integrate over the Fourier variabl&s andq,,., and retain HoiHao2 0
only terms in the exponent of the integrand that are extensive HosHoa
in N. We also drop any irrelevant prefactors This gives H= : (A13)
0 HRlHR2
HRSHR4
sz ]._[ dRVf H dqvv’
v v The matriceHq1, . . . ,Hga,Hg1, - . . Hr4 are diagonal,
A a 1 1
X - = — = = —x? 0
exp(N[ ZEVq”V StrinM+ StrinL ) o2 I
Q1 ,
(A9) 0 2%y
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1 from which we have, after some simplification, two contri-
|z 0 butions to deH,
Ho2=Hqs= ,

0  2lyn-
n(n=1)/2 detH=4""a '(A\x—1)>= 1] D2X[1+A— ANX]",

ota™t (A14)

— 0
2(1- o?a x)? " .
Hos= , wherex is given by Eq.(19).
0 20! When multiple symmetry-breaking directions are present
(1- 02a~1x)2 In(n-1)r2 in C the Hessian evaluated at the saddle point corresponding
to R,=0m=1,....S stil takes a simple block diagonal
Ao? form and we find
Hri= I,
1-o?a X
7 detH=4""Ta" L(\x—1)2—1]n("+ D12
HRZZHR?»:”N! S
B < T [1+AL—ANX]" (A15)
HR4_ Xln, m=1
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